Inter- and Intramolecular Hetero Diels-Alder Reactions, 39^[1]

Influence of Phenylthio and Alkylthio Substituents on the Reactivity of 1-Oxa-1,3-butadienes in Hetero Diels-Alder Reactions

Lutz F. Tietze*, Jens Fennen, and Jürgen Wichmann

Institut für Organische Chemie der Universität Göttingen, Tammannstraße 2, W-3400 Göttingen, F.R.G.

Received February 15, 1992

Key Words: Enamino ketones / 1,4-Thiazines / Hetero Diels-Alder reactions / Pyrans, dihydro / Calculations, semiempirical

The synthesis of the cyclic enamino ketones 1-3 bearing an alkylthio or an phenylthio group and their reactivity in hetero Diels-Alder reactions with enol ethers is described. Only compound **3** with an phenylthio group undergoes a cycloaddition with 16a-d to afford the diastereometric adducts 17a-d and

We have recently shown that the intermolecular hetero Diels-Alder reaction of 1-oxa-1,3-butadienes bearing an acylamino group at C-3 and an electron-withdrawing group at C-1 or C-2 is an efficient route to 3-amino sugar derivatives^[2]. In the reaction of these enamino ketones, which belongs to the inverse type, the overlap of the LUMO of the heterodiene with the HOMO of the dienophile is most important. Thus, electron-withdrawing groups, which lower the energy of the LUMO, increase the reaction rate. As electron-withdrawing groups the trichloromethyl, dichloromethyl, and the trifluoromethyl as well as the methoxycarbonyl group have been used^[3]. Interestingly, enamino ketones with a phenylthio group^[2a, c, 4] at C-3 of the oxabutadiene moiety also show a high reacivity in hetero Diels-Alder reactions, whereas enamino ketones with an alkylthio group are much less reactive.

In this paper we describe our investigations of the understanding of this difference. We have synthesized the three cyclic enamino ketones 1-3 and have investigated their reactivity in cycloaddition reactions with enol ethers. The enamino ketones 1 and 2 bear an alkylthio group whereas enamino ketone 3 is activated by a phenylthio group at C-3 of the 1-oxabutadiene moiety. In all compounds the enamino group has the (Z) configuration.

Enamino ketone 1 is synthesized in four steps by starting from ethyl (S)-2-hydroxypropionate (4), which is converted

18a-d. To estimate the activation by a phenylthio and alkylthio group semiempirical PM3/RHF calculations of the frontier orbital energies and coefficients of different enamine carbaldehydes have been performed.

into 5 by a Mitsunobu reaction^[5] in 97% yield. Hydrolysis of the acetylthio group with K_2CO_3 in methanol^[6] and reaction with chloroacetone lead to 6 in 91% yield. Condensation of 6 with dimethylformamide dimethyl acetal in tetrahydrofuran^[7] affords 67% of 7, which is cyclized with complete racemization by treatment with benzylamine in ethanol at reflux temperature to give *rac*-1 in 63% yield.

Enamino ketone 2 is prepared in four steps from (*R*)-2amino-2-phenylethanol (8), which is first tosylated in pyridine^[8] to give 9 in 73% yield. Subsequent S_N reaction with potassium thioacetate in acetone^[9] affords 89% of 10, which is transformed into 2 via 11 as described for 1.

Similarly, the 1,4-benzothiazine derivative 3 is obtained in a four-step sequence from 2-mercaptoaniline (12) via 13, 14, and 15 in 44% yield. Interestingly, 14 reacts with dimethylformamide dimethyl acetal already at room temperature presumably due to a neighboring effect of the acetanilido group.

For the cycloadditions a solution of the dienes 1-3 and the dienophiles 16a - d in toluene is heated for seven days at 125°C in a pressure flask. Only the diene 3 reacts under these conditions, whereas 1 and 2 can be recovered unchanged. At higher temperatures decomposition occurs. These results clearly show, that only the phenylthio group as compared to the alkylthio group has a sufficient activating effect on the 1-oxa-1,3-butadiene. 1508

The yields and the selectivities of the cycloadditions of 3 and 16a - d are given in Table 1.

Table 1. Synthesis of 17a - d and 18a - d from 3 and 16

17 + 18	a	b	c	d
Ratio 17:18	4.5:1 ^[a]	1.9:1 ^[b]	2.4:1 ^[a]	1:1.6 ^[a]
Yield (%)	74	81	74	79

^[a] Determined by ¹³C-NMR spectroscopy of the crude product. – ^[b] Determined by HPLC.

As found for the acyclic enamino ketones the endo/exo selectivity is low though the heterodiene is fixed in the (Z) configuration. The cycloaddition reaction of **3** with the enol ether **16d** bearing the bulky *tert*-butyl group is *exo*-selective because of a disfavoring of the *endo* transition structure due to steric interactions (17d:18d = 1:1.6); in contrast, the steric unhindered enol ether **16a** shows the highest *endo* selectivity (17a:18a = 4.5:1).

The configuration and the conformation of the cycloadducts 17a-d and 18a-d have been determined by ¹H-NMR spectroscopy. For all compounds the conformation with the acetamido group in a pseudoequatorial orientation is preferred. This can be deduced from the coupling constants for 3-H and 4-H in the ¹H-NMR spectra. 3-H in 17a-d resonates at $\delta = 5.09-5.42$ as a doublet of doublets with J = 10.0 and 2.5 Hz indicating an equatorial orientation of the alkoxy group. The signals for 3-H of 18a-dare observed at $\delta = 4.95-5.34$ with two small coupling constants of J = 2.5 Hz, which shows that the alkoxy group is axially orientated. 4-H_{ax} of 17a-d gives a signal at $\delta =$ 1.59-1.64 as a doublet of doublets with three large coupling constants of J = 12.5, 11.0, and 10.0 Hz and 4-H_{ax} of **18a-d** at $\delta = 1.48-1.52$ with two large and one small coupling constants of J = 12.5, 11.0, and 2.5 Hz. This clearly proves the pseudoequationial position of the acetamido group with an axially orientated 4a-H, in both the *exo* and *endo* products.

Semiempirical Calculations of Enamine Carbaldehydes

To confirm the results we had described earlier^[2a] and the unexpected low reactivity of the alkylthio-substituted enamino ketones 1 and 2, respectively, we have carried out calculations of frontier orbital energies and coefficients of an *N*-acetylenamine carbaldehyde bearing several different substituents at C-2. The results are given in Table 2.

Table 2. Calculated frontier orbital energies and coefficients with PM3/RHF

H-N R 2 3 1 0

НОМО				LUMO					
E[eV]	0	C1	C2	C3	EleV]	0	C1	C2	C3
-9.216	-0.225	0.030	0.583	0.321	-0.412	0.331	-0.368	-0.430	0.593
-9.376	-0.242	0.022	0.593	0.273	-0.437	0.334	-0.367	-0.427	0.595
-9.247	-0.218	0.032	0.576	0.307	-0.535	0.338	-0.374	-0.430	0.599
-9.270	-0.168	0.025	0.459	0.245	-0.645	0.323	-0.354	-0.431	0.608
-9.086	-0.130	0.023	0.370	0.203	-0.765	0.253	-0.265	-0.395	0.628
-9.565	-0.235	0.019	0.607	0.232	-0.867	0.239	-0.247	-0.389	0.632
-9.972	-0.252	0.013	0.628	0.204	-1.056	0.271	-0.282	-0.416	0.652
-9.672	-0.229	0.026	0.595	0.264	-1.128	0.261	-0.270	-0.403	0.641
	E[eV] -9.216 -9.376 -9.247 -9.270 -9.086 -9.565 -9.972 -9.672	E[eV] O -9.216 -0.225 -9.376 -0.242 -9.247 -0.218 -9.270 -0.168 -9.086 -0.130 -9.565 -0.235 -9.972 -0.252 -9.672 -0.229	HOMO E[eV] O C1 -9.216 -0.225 0.030 -9.376 -0.242 0.022 -9.247 -0.218 0.032 -9.270 -0.168 0.023 -9.366 -0.130 0.023 -9.565 -0.235 0.019 -9.972 -0.252 0.013 -9.672 -0.229 0.026	HOMO E[eV] O C1 C2 -9.216 -0.225 0.030 0.583 -9.376 -0.242 0.022 0.593 -9.247 -0.218 0.032 0.576 -9.270 -0.168 0.025 0.459 -9.086 -0.130 0.023 0.370 -9.565 -0.235 0.019 0.607 -9.972 -0.252 0.013 0.628 -9.672 -0.299 0.026 0.595	HOMO E[eV] O C1 C2 C3 -9.216 -0.225 0.030 0.583 0.321 -9.376 -0.242 0.022 0.593 0.273 -9.376 -0.242 0.022 0.593 0.273 -9.376 -0.242 0.022 0.576 0.307 -9.270 -0.168 0.025 0.459 0.245 -9.086 -0.130 0.023 0.370 0.203 -9.565 -0.235 0.019 0.607 0.232 -9.972 -0.252 0.013 0.628 0.204 -9.972 -0.252 0.013 0.628 0.204	EleV1 O C1 C2 C3 EleV1 -9.216 -0.225 0.030 0.583 0.321 -0.412 -9.376 -0.242 0.022 0.593 0.273 -0.437 -9.376 -0.242 0.022 0.593 0.273 -0.437 -9.376 -0.218 0.032 0.576 0.307 -0.535 -9.270 -0.168 0.025 0.459 0.245 -0.645 -9.086 -0.130 0.023 0.370 0.203 -0.765 -9.565 -0.235 0.019 0.607 0.232 -0.867 -9.572 -0.252 0.013 0.628 0.204 +1.056 -9.772 -0.229 0.026 0.595 0.264 +1.128	HOMO C1 C2 C3 EIeV1 O -9.216 -0.225 0.030 0.583 0.321 -0.412 0.331 -9.376 -0.242 0.022 0.593 0.273 -0.437 0.334 -9.376 -0.242 0.022 0.593 0.273 -0.437 0.334 -9.376 -0.218 0.032 0.576 0.307 -0.535 0.338 -9.270 -0.168 0.025 0.459 0.245 -0.645 0.323 -9.086 -0.130 0.023 0.370 0.203 -0.765 0.253 -9.565 -0.235 0.019 0.607 0.232 -0.867 0.239 -9.772 -0.252 0.013 0.628 0.204 -1.056 0.271 -9.672 -0.229 0.026 0.595 0.264 -1.128 0.261	HOMO C2 C3 E[eV] O C1 -9.216 -0.225 0.030 0.583 0.321 -0.412 0.331 -0.368 -9.376 -0.242 0.022 0.593 0.273 -0.437 0.334 -0.367 -9.376 -0.242 0.022 0.593 0.273 -0.437 0.334 -0.367 -9.247 -0.188 0.032 0.576 0.307 -0.535 0.338 -0.374 -9.270 -0.168 0.025 0.459 0.245 -0.645 0.323 -0.354 -9.086 -0.130 0.023 0.370 0.203 -0.765 0.253 -0.265 -9.565 -0.235 0.019 0.607 0.232 -0.867 0.239 -0.247 -9.972 -0.252 0.013 0.628 0.204 -1.056 0.271 -0.282 -9.672 -0.229 0.026 0.595 0.264 -1.128 0.261 -0.270 <td>LUMO LUMO E[eV] O C1 C2 C3 E[eV] O C1 C2 -9.216 -0.225 0.030 0.583 0.321 -0.412 0.331 -0.368 -0.430 -9.376 -0.242 0.022 0.593 0.273 -0.437 0.334 -0.367 -0.427 -9.247 -0.218 0.032 0.576 0.307 -0.535 0.338 -0.374 -0.430 -9.270 -0.168 0.025 0.459 0.245 -0.645 0.323 -0.354 -0.431 -9.086 -0.130 0.023 0.370 0.233 -0.258 -0.265 -0.395 -9.565 -0.235 0.019 0.607 0.232 -0.867 0.239 -0.247 -0.389 -9.572 -0.252 0.013 0.628 0.204 -1.056 0.271 -0.282 -0.416 -9.672 -0.229 0.026 0.595 0.264 -1.128 0.261 <td< td=""></td<></td>	LUMO LUMO E[eV] O C1 C2 C3 E[eV] O C1 C2 -9.216 -0.225 0.030 0.583 0.321 -0.412 0.331 -0.368 -0.430 -9.376 -0.242 0.022 0.593 0.273 -0.437 0.334 -0.367 -0.427 -9.247 -0.218 0.032 0.576 0.307 -0.535 0.338 -0.374 -0.430 -9.270 -0.168 0.025 0.459 0.245 -0.645 0.323 -0.354 -0.431 -9.086 -0.130 0.023 0.370 0.233 -0.258 -0.265 -0.395 -9.565 -0.235 0.019 0.607 0.232 -0.867 0.239 -0.247 -0.389 -9.572 -0.252 0.013 0.628 0.204 -1.056 0.271 -0.282 -0.416 -9.672 -0.229 0.026 0.595 0.264 -1.128 0.261 <td< td=""></td<>

The frontier orbital energies and coefficients have been calculated by using the semiempirical PM3/RHF^[10] method. The given values always represent the *cisoid* conformation of each molecule. All other substituents have the orientation with the lowest energy. AM1/RHF^[11] calculations give nearly the same relative results, though the absolute values are slightly different; for the missing AM1 sulfur parameters the MNDO^[12] parameters have been used.

As expected the cyano and trifluoromethyl group as strong electron-withdrawing groups decrease the energy of the LUMO whereas the methyl group as an electron-donating group increases it. Alkoxy and phenoxy as well as alkylthio and phenylthio groups lower the energy of the LUMO due to -I and conjugation effects, whereby the phenylthio group causes the greatest change. Interestingly, the coefficients at C-3 for the two thio-substituted enamine carbaldehydes are quite similar; also the effect of the phenyl group as compared to the alkyl group on the LUMO in the O- and S-substituted enamine carbaldehydes is of the same magnitude (≈ 0.1 eV). The calculated difference for alkylthio and phenylthio substitution is in agreement with our experimental results, indicating that the energy of the LUMO of enamine carbaldehydes or enamino ketones usable for cycloadditions should not be above E = -0.8 eV. These results also demonstrate that phenylthio is only a weakly activating group since enamino ketones with a CO₂Me group at C-2 or a CF₃, CO₂Me, and CCl₃ group, respectively, at C-1 show a much higher reactivity^[2,3].

We thank the Fonds der Chemischen Industrie for generous support and Dr. R. Seele, BASF (Ludwigshafen), for providing enol ethers.

Experimental

¹H and ¹³C NMR: Varian XL-200, VXR-200, XL 100, and FT-80 A; multiplicities were determined with the APT-pulse sequence. – IR: Bruker IFS 25. – UV: Varian Cary 219. – Optical rotations: Perkin-Elmer 241. – Melting points: Kofler hot stage or Mettler FP 61. – Elemental analyses: Analytical laboratory of the university. – All solvents were distilled prior to use. Reagents and materials were obtained from commercial suppliers and were used without further purification. All reactions were carried out under nitrogen and monitored by TLC (Macherey-Nagel, Polygram SIL G/UV_{254}). Products were isolated by column chromatography on silica gel (ICN Silica 63–200, 60 A, ICN Biomedicals).

Synthesis of (RS)-6-Acetyl-4-benzyl-2-methyl-2H-1,4-thiazin-3(4H)-one (1)

a) Ethyl (R)-2-(Acetylthio) propionate (5): To a stirred solution of triphenylphosphane (22.2 g, 84.6 mmol) in anhydrous tetrahydrofuran (200 ml) was added diisopropyl azodicarboxylate (17.1 g, 84.6 mmol) at 0°C. After stirring for 30 min at 0°C a solution of 4 (7.50 g, 63.5 mmol) and thioacetic acid (6.40 g, 84.6 mmol) in anhydrous tetrahydrofuran (50 ml) was added dropwise over a period of 15 min. Stirring was continued at 0°C for 1 h and for an additional h at room temp. to get a clear yellow solution. The solvent was removed in vacuo, and to the residue was added diethyl ether (150 ml). The solution was cooled at 0°C for 12 h and the precipitate (triphenylphosphane oxide) separated. The solvent was removed in vacuo and the residue purified by distillation to give 10.8 g (97%) of 5, b.p. $107 \,^{\circ}C/15$ Torr, $[\alpha]_D^{20} = 130.3$ (c = 1, MeOH). – UV (CH₃CN): λ_{max} (lg ε) = 229 nm (3.532). – IR (film): $\tilde{v} = 1735 \text{ cm}^{-1}$, 1695 (C=O). $- {}^{1}\text{H} \text{ NMR}$ (CDCl₃): $\delta = 1.28$ (t, J = 7.0 Hz, 3H, OCH₂CH₃), 1.55 (d, J = 7.5 Hz, 3H, 3-H), 2.37 (s, 3H, COCH₃), 4.22 (q, J = 7.0 Hz, 2H, OCH₂CH₃), 4.24 (q, J =7.5 Hz, 1H, 2-H).

> C₇H₁₂O₃S (176.2) Calcd. C 47.71 H 6.86 Found C 47.83 H 6.97

b) Ethyl (R)-2-(2-Oxopropylthio)propionate (6): A mixture of 5 (5.00 g, 28.4 mmol) and potassium carbonate (2.00 g) in anhydrous methanol (50 ml) was stirred at room temp. for 30 min. After cooling to 0°C chloroacetone (2.26 ml, 28.4 mmol) was added dropwise, and the solution was stirred at room temp. for 1 h. The solvent was removed in vacuo, and to the residue was added diethyl ether (70 ml). The precipitate was filtered off, and after evaporation of the solvent in vacuo the residue was purified by distillation to give 4.91 g (91%) of 6, b.p. $124^{\circ}C/15$ Torr, $[\alpha]_{D}^{20} = 111.1$ (c = 1, MeOH). – UV (CH₃CN): λ_{max} (lg ε) = 219 nm (3.864). – IR (film): $\tilde{v} = 1720 \text{ cm}^{-1}$ (C=O). – ¹H NMR (CDCl₃): $\delta = 1.30$ (t, J = 7.0 Hz, 3H, OCH₂CH₃), 1.45 (d, J = 7.5 Hz, 3H, 3-H), 2.30 (s, 3H, COCH₃), 3.46 (q, J = 7.0 Hz, 1H, 2-H), 3.40, 3.54 (AB system, J = 18.0 Hz, 2H, SCH₂), 4.21 (q, J = 7.0 Hz, 2H, OCH₂CH₃). C₈H₁₄O₃S (190.3) Calcd. C 50.50 H 7.42 S 16.85

Found C 50.64 H 7.48 S 16.66

c) Ethyl (R)-2-{1-[(Dimethylamino)methylen]-2-oxopropylthio]propionate (7): A stirred solution of 6 (4.00 g, 21.0 mmol) and dimethylformamide dimethyl acetal (5.00 g, 42.1 mmol) in anhydrous tetrahydrofuran (20 ml) was heated at reflux for 24 h. After evaporation of the solvent in vacuo the residue was purified by distillation to give 3.46 g (67%) of 7, b.p. 143 °C/0.1 Torr, $[\alpha]_D^{20} = 82.9$ (c = 1, MeOH). – UV (CH₃CN): λ_{max} (lg ε) = 302 nm (4.132). – IR (film): $\tilde{v} = 1729$ cm⁻¹, 1640 (C=O), 1580 (C=C). – ¹H NMR (CDCl₃): $\delta = 1.24$ (t, J = 7.0 Hz, 3H, OCH₂CH₃), 1.39 (d, J =7.0 Hz, 3H, 3-H), 2.39 (s, 3H, COCH₃), 3.31 [s, 6H, N(CH₃)₂], 3.42 (q, J = 7.0 Hz, 1H, 2-H), 4.12 (q, J = 7.0 Hz, 2H, OCH₂CH₃), 7.96 (s, 1H, 1'-H).

C₁₁H₁₉NO₃S (245.3) Calcd. C 53.86 H 7.81 S 13.07 Found C 53.75 H 7.77 S 13.11

d) Thiazinone 1: A stirred solution of 7 (1.50 g, 6.10 mmol) and benzylamine (0.65 g, 6.10 mmol) in anhydrous ethanol was heated at reflux for 24 h. After evaporation of the solvent in vacuo the residue was purified by column chromatography (ethyl acetate/hexane, 2: 3) to yield 1.00 g (63%) of 1, m.p. 99 °C (diethyl ether), $R_f =$ 0.59. – UV (CH₃CN): λ_{max} (lg ε) = 236 nm (3.736), 265 (3.707), 332 (3.877). – IR (KBr): $\tilde{v} = 1695 \text{ cm}^{-1}$, 1640 (C=O), 1605 (C=C). – ¹H NMR (C₆D₆): $\delta = 1.23$ (d, J = 7.0 Hz, 3H, CH₃), 1.82 (s, 3H, 2'-H), 2.98 (q, J = 7.0 Hz, 1H, 2-H), 4.38, 4.52 (AB system, J = 18.0 Hz, 2H, NCH₂), 6.98 (s, 1H, 5-H), 7.08 (s, 5H, Ph). – ¹³C NMR (CDCl₃): $\delta = 14.97$ (CH₃), 25.44 (C-2'), 35.94 (C-2), 51.55 (NCH₂), 116.7 (C-6), 127.3, 127.9, 128.9 (CH-Ph), 135.9 (C-5), 136.1 (*i*-Ph), 165.4 (C-3), 192.7 (C-1').

 $\begin{array}{c} C_{14}H_{15}NO_2S \ (261.3) \\ Found \ C \ 64.35 \ H \ 5.79 \ N \ 5.36 \ S \ 12.27 \\ Found \ C \ 64.23 \ H \ 5.84 \ N \ 5.31 \ S \ 12.17 \\ \end{array}$

Synthesis of (R)-6-Acetyl-3,4-dihydro-3-phenyl-4-(p-tolylsulfon-yl)-2H-1,4-thiazine (2)

a) (R)-2-Phenyl-O-(p-tolylsulfonyl)-2-[(p-tolylsulfonyl)amino]ethanol (9): To a stirred solution of 8 (13.8 g, 0.10 mol) in pyridine (150 ml) was added at 0°C p-toluenesulfonyl chloride (42.0 g, 0.22 mol), and stirring was continued at 4°C for 1 d. The mixture was poured onto crushed ice (500 g), extracted with diethyl ether (5 \times 100 ml), the combined organic extracts were washed with satd. aqueous NaHCO₃ (1 \times 100 ml), brine (1 \times 100 ml), and dried (MgSO₄). After evaporation of the solvent in vacuo the residue was purified by crystallization to give 32.5 g (73%) of 9, m.p. 116°C (ethanol), $[\alpha]_D^{20} = -28.8$ (c = 1, chloroform). - UV (CH₃CN): λ_{max} (lg ϵ) = 226 nm (4.376), 263 (3.076). – IR (KBr): $\tilde{\nu}$ = 3306 cm $^{-1}$ (NH), 1598 (NH). - 1H NMR (CDCl_3): δ = 2.38 (s, 3H, NTs-CH₃), 2.44 (s, 3H, OTs-CH₃), 4.14 (ABX system, J = 16.0, 6.0 Hz, 2H, 1-H), 4.42 (q, J = 6.0 Hz, 1H, 2-H), 5.22 (d, J = 6.0 Hz, 1H, 2-H)1 H, NH), 6.98 - 7.24 (m, 7H, Ph, NTs-2-H), 7.29 (d, J = 8.0 Hz, 2H, OTs-2-H), 7.58 (d, J = 8.0 Hz, 2H, NTs-3-H), 7.64 (d, J =8.0 Hz, 2H, OTs-3-H).

> C₂₂H₂₃NO₅S₂ (445.6) Calcd. C 59.30 H 5.20 Found C 59.23 H 5.11

b) (*R*)-S-Acetyl-2-phenyl-2-[(p-tolylsulfonyl)amino]ethanethiol (10): A mixture of 9 (7.00 g, 15.7 mmol) and potassium thioacetate (2.00 g, 17.5 mmol) in anhydrous acetone (200 ml) was stirred at room temp. for 12 h. Filtration of the mixture, evaporation of the solvent from the filtrate and crystallization of the residue afforded 4.90 g (89%) of 10, m.p. 115 °C (ethanol), $[\alpha]_{20}^{20} = -73.6$ (c = 1, chloroform). – UV (CH₃CN): λ_{max} (lg ϵ) = 229 nm (4.191), 263 (2.806). – IR (KBr): $\tilde{\nu}$ = 3278 cm⁻¹ (NH), 1652 (C=O), 1600 (NH). – ¹H NMR (CDCl₃): δ = 2.26 (s, 3H, Ts-CH₃), 2.36 (s, 3H, COCH₃), 3.05, 3.14 (AB system, J = 14.0, 9.0 Hz, 2H, 1-H), 4.48 1510

(m_c, 1 H, 2-H), 5.30 (s, br, 1 H, NH), 7.10-7.27 (m, 7 H, Ph, Ts-2-H), 7.58 (d, J = 8.0 Hz, 2 H, Ts-3-H).

 $\begin{array}{rl} C_{17}H_{19}NO_{3}S_{2} \mbox{ (349.5)} & Calcd. \ C \ 58.42 \ H \ 5.48 \ S \ 18.35 \\ Found \ C \ 58.53 \ H \ 5.50 \ S \ 18.30 \end{array}$

c) (R)-S-(2-Oxopropyl)-2-phenyl-2-[(p-tolylsulfonyl)amino]ethanethiol (11): A mixture of 10 (4.13 g, 11.8 mmol) and potassium carbonate (0.85 g) in anhydrous methanol (50 ml) was stirred at room temp. for 30 min. After cooling to 0°C chloroacetone (1.09 g, 11.8 mmol) was added dropwise, and the solution was stirred at room temp. for 1 h. The solvent was removed in vacuo, and to the residue was added diethyl ether (60 ml). The precipitate was filtered off, and after evaporation of the solvent from the filtrate in vacuo the residue was purified by crystallization to give 2.62 g (61%) of 11, m.p. 107 °C (ethanol), $[\alpha]_D^{20} = -55.5$ (c = 1, chloroform). - UV (CH₃CN): λ_{max} (lg ϵ) = 227 nm (4.023), 263 (2.803). – IR (KBr): $\tilde{\nu}$ = 3168 cm⁻¹ (NH), 1706 (C=O), 1600 (NH). - ¹H NMR (CDCl₃): $\delta = 2.19$ (s, 3H, Ts-CH₃), 2.36 (s, 3H, COCH₃), 2.81, 2.82 (AB system, J = 17.0, 7.5 Hz, 1 H, 1-H), 3.01, 3.11 (AB system, J =18.0 Hz, 1H, 1'-H), 4.44 (t, J = 7.5 Hz, 1H, 2-H), 5.54 (s, br, 1H, NH), 7.08 - 7.21 (m, 7H, Ph, Ts-2-H), 7.59 (d, J = 8.0 Hz, 2H, Ts-

^{3-H).} $C_{18}H_{21}NO_3S$ (363.5) Calcd. C 59.48 H 5.82 S 17.64 Found C 59.63 H 5.82 S 17.30

d) Thiazine 2: A solution of 11 (1.50 g, 4.10 mmol) and dimethylformamide dimethyl acetal (1.00 g, 8.30 mmol) in anhydrous tetrahydrofuran (30 ml) was heated at reflux for 24 h. Evaporation of the solvent and purification of the residue by column chromatography yielded 2 (0.95 g, 62%), m.p. 123 °C (diethyl ether), $R_f =$ 0.57, $[\alpha]_D^{20} = -33.5$ (c = 1, chloroform). – UV (CH₃CN): λ_{max} (lg ε) = 223 nm (4.231), 315 (4.076). – IR (KBr): $\tilde{v} = 1658 \text{ cm}^{-1}$ (C=O), 1592 (C=C). – ¹H NMR (CDCl₃): $\delta = 2.39$ (s, 3H, Ts-CH₃), 2.42 (s, 3H, COCH₃), 2.64 (dd, J = 14.0, 3.0 Hz, 1 H, 2-H_{ax}), 2.90 (dd, J = 14.0, 3.0 Hz, 1 H, 2-H_{eq}), 5.58 (t, J = 3.0 Hz, 2 H, Ts-3-H), 8.37 (s, 1 H, 5-H). – ¹³C NMR (CDCl₃): $\delta = 21.48$ (Ts-CH₃), 2.5.06 (C-2'), 30.67 (C-2), 55.62 (C-3), 115.9 (C-6), 126.1 (C-2-Ts), 127.1 (C-3-Ts), 127.7, 128.2, 129.9 (CH-Ph), 131.4 (C-5), 134.4 (C-4-Ts), 138.5 (*i*-Ph), 144.9 (C-1-Ts), 192.9 (C-1').

$\begin{array}{c} C_{19}H_{19}NO_{3}S_{2} \ (373.5) \\ Found \ C \ 61.13 \ H \ 5.13 \ N \ 3.75 \ S \ 17.17 \\ Found \ C \ 61.09 \ H \ 5.19 \ N \ 3.73 \ S \ 17.23 \end{array}$

Synthesis of 2,4-Diacetyl-4H-1,4-benzothiazine (3)

a) *N-Acetyl-2-(acetylthio)aniline* (13): To a stirred solution of acetyl chloride (31.4 g, 0.40 mol) and pyridine (31.6 g, 0.40 mol) in anhydrous dichloromethane (250 ml) was added a solution of 12 (25.0 g, 0.20 mol) in dichloromethane (30 ml) over a period of 20 min. After stirring for 12 h at room temp., diethyl ether (200 ml) was added and the solution washed with 1 N HCl (1 × 200 ml), satd. aqueous NaHCO₃ (1 × 200 ml), and brine (1 × 200 ml) and dried (Na₂SO₄). Evaporation of the solvent and crystallization afforded 13 (37.2 g, 89%), m.p. 116°C (diethyl ether). – UV (CH₃CN): λ_{max} (lg ε) = 213 nm (4.394), 247 (4.081), 286 (3.377). – IR (KBr): $\tilde{v} = 3336 \text{ cm}^{-1}$ (NH), 1690 (C=O), 1578 (C=C). – ¹H NMR (CDCl₃): $\delta = 2.17$ (s, 3H, NCOCH₃), 2.48 (s, 3H, SCOCH₃), 6.95–7.55 (m, 3H, Ph), 7.65 (br, 1H, NH), 8.05–8.40 (m, 1H, Ph). C₁₀H₁₁NO₂S (209.3) Calcd. C 57.39 H 5.30

Found C 57.52 H 5.39

b) N-Acetyl-2-(2-oxopropylthio) aniline (14): A mixture of 13 (10.0 g, 47.8 mmol) and potassium carbonate (3.30 g) in anhydrous methanol (80 ml) was stirred at room temp. for 30 min. After cooling to 0° C chloroacetone (3.80 g, 47.8 mmol) was added dropwise, and the solution was stirred at room temp. for 1 h. The solvent was removed in vacuo, and to the residue was added diethyl ether

(100 ml). The precipitate was filtered off, and after evaporation of the solvent from the filtrate in vacuo the residue was purified by crystallization to give 9.80 g (92%) of 14, m.p. 82 °C (ethanol/hexane). – UV (CH₃CN): λ_{max} (lg ε) = 211 nm (4.303), 244 (4.092), 287 (3.335). – IR (KBr): $\tilde{\nu}$ = 3230 cm⁻¹ (NH), 1712, 1656 (C=O), 1536 (C=C). – ¹H NMR (CDCl₃): δ = 2.17 (s, 3H, NCOCH₃), 2.27 (s, 3H, CH₃), 3.69 (s, 2H, CH₂), 6.81–7.55 (m, 3H, Ph), 8.25 (m_c, 1H, Ph), 9.17 (br, 1H, NH).

$C_{11}H_{13}NO_2S$ (223.3)	Calcd.	C 59.17	H 5.87
	Found	C 59.21	H 5.98

c) 3-[2-(Acetylamino)phenylthio]-4-(dimethylamino)-3-buten-2one (15): A solution of 14 (5.00 g, 22.4 mmol) and dimethylformamide dimethyl acetal (2.94 g, 24.6 mmol) in anhydrous tetrahydrofuran (80 ml) was stirred at room temp. for 20 h. After evaporation of the solvent in vacuo the residue was purified by crystallization to give 5.38 g (86%) of 15, m.p. 151 °C (ethanol). – UV (CH₃CN): λ_{max} (lg ε) = 219 nm (4.298), 250 (4.163), 300 (4.230). – IR (KBr): \tilde{v} = 3218 cm⁻¹ (NH), 1686, 1632 (C=O), 1578, 1560 (C=C). – ¹H NMR (CDCl₃): δ = 2.22 (s, 3H, NCOCH₃), 2.24 (s, 3H, 1-H), 3.29 [s, 6H, N(CH₃)₂], 6.95 – 7.25 (m, 3H, Ph), 7.81 – 8.02 (m, 2H, 4-H, Ph), 8.55 (br. 1H, NH).

 $\begin{array}{rl} C_{14}H_{18}N_2O_2S \ (278.4) & Calcd. \ C \ 60.40 \ H \ 6.52 \\ Found \ C \ 60.38 \ H \ 6.58 \end{array}$

d) *Benzothiazine* 3: A solution of 15 (1.00 g, 3.59 mmol) and camphersulfonic acid (30.0 mg) in anhydrous toluene (30 ml) was heated at reflux for 24 h. After evaporation of the solvent in vacuo the residue was purified by column chromatography to yield 3 (0.52 g, 62%), m.p. 87°C (ethanol), $R_{\rm f} = 0.59$. – UV (CH₃CN): $\lambda_{\rm max}$ (lg ϵ) = 216 nm (4.176), 238 (4.178), 351 (3.387). – IR (KBr): $\tilde{v} = 1676 \text{ cm}^{-1}$, 1666 (C=O), 1620 (C=C). – ¹H NMR (CDCl₃): $\delta = 2.40$ (s, 3H, NCOCH₃), 2.45 (s, 3H, 2'-H), 7.24 (s, 4H, Ph), 7.99 (s, 1H, 3-H). – ¹³C NMR (CDCl₃): $\delta = 23.35$ (CH₃), 26.03 (C-2'), 124.0, 127.0, 127.1 (CH-Ph), 127.5 (C-2), 128.4 (CH-Ph), 128.9, 135.7 (*i*-Ph), 136.9 (C-3), 168.6 (NCO), 192.1 (C-1').

Synthesis of 17a - d and 18a - d by Diels-Alder Reaction of 3 with the Dienophiles 16a - d. – General Procedure: To a solution of the diene 3 in anhydrous toluene (10 ml) were added the dienophiles 16a - d (2 ml) and 2-tert-butyl-4-methylphenol (0.5 mol-%). The mixtures were heated at $125 \,^{\circ}$ C in a pressure flask for 7 d. After removal of the solvent in vacuo the crude products were purified by column chromatography (ethyl acetate/hexane, 1:1).

(3R*,4aR*)- and (3S*,4aR*)-5-Acetyl-3,4,4a,5-tetrahydro-3methoxy-1-methylpyrano[3,4-b][1,4]benzothiazine (17a/18a): Reaction of 3 (500 mg, 2.14 mmol) with 16a according to the general procedure afforded 110 mg of 3 and a mixture of 17a and 18a (360 mg, 74%), m.p. (mixture) 117° C (ethanol), $R_{f} = 0.60. - UV$ (CH_3CN) : λ_{max} (lg ε) = 220 nm (4.408), 247 (4.118). – IR (KBr): $\tilde{v} = 2998 \text{ cm}^{-1}$, 2932 (CH), 1646 (C=O), 1582, 1572 (C=C). - ¹H NMR (CDCl₃): $\delta = 1.52$ (m_c, 0.24H, 4-H_{av}), 1.59 (ddd, J = 12.5, 11.0, 10.0 Hz, 0.76 H, 4-H_{ax}), 1.97, 1.99 (2 d, J = 2.1 Hz, 3 H, CH₃), 2.04 (s, 3H, COCH₃), 2.52 (m_e, 0.24H, 4-H_{eq}), 2.59 (ddd, J = 12.5, 5.5, 2.5 Hz, 0.76 H, 4-H_{eq}), 3.48, 3.49 (2 s, 3 H, OCH₃), 4.95 (t, J =2.5 Hz, 0.24 H, 3-H), 5.09 (dd, J = 10.0, 2.5 Hz, 0.76 H, 3-H), 5.62 $(m_c, 1H, 4a-H), 7.07 - 7.41 (m, 4H, Ph). - {}^{13}C NMR (CDCl_3): \delta =$ 18.18 (CH₃), 23.23, 23.36 (COCH₃), 31.77, 33.49 (C-4), 52.77, 55.93 (C-4a), 55.79, 56.36 (OCH₃), 98.11, 100.1 (C-3), 102.1, 103.1 (C-10a), 126.3, 126.5, 126.6, 126.8, 126.9, 128.1, 128.2, 128.6 (CH-Ph), 136.7, 136.8, 138.1 (i-Ph), 150.6, 152.3 (C-1), 169.9, 170.0 (NCO).

> C₁₅H₁₇NO₃S (291.4) Calcd. C 61.83 H 5.88 Found C 61.97 H 5.87

 $(3R^*,4aR^*)$ - and $(3S^*,4aR^*)$ -5-Acetyl-3-ethoxy-3,4,4a,5-tetrahydro-1-methylpyrano[3,4-b][1,4]benzothiazine (17b/18b): Reaction of 3 (500 mg, 2.14 mmol) with 16b according to the general procedure afforded a mixture of 17b and 18b (547 mg, 84%), $R_f =$ 0.60. – UV (CH₃CN): λ_{max} (lg ϵ) = 222 nm (4.346), 246 (4.087). – IR (film): $\tilde{v} = 2976 \text{ cm}^{-1}$, 2930 (CH), 1666 (C=O), 1584, 1570 (C=C). - ¹H NMR (CDCl₃): δ = 1.21 (2 t, J = 7.5 Hz, 3 H, OCH_2CH_3), 1.51 (ddd, J = 12.5, 11.0, 2.5 Hz, 0.33 H, 4-H_{ax}), 1.62 (ddd, J = 12.5, 11.0, 10.0 Hz, 0.66 H, 4-H_{ax}), 1.98 (2 d, J = 2.1 Hz, 3H, CH₃), 2.03 (s, 3H, COCH₃), 2.54 (m_c, 0.33H, 4-H_{eo}), 2.59 (ddd, J = 12.5, 5.5, 2.5 Hz, 0.66 H, 4-H_{eq}), 3.50 - 3.97 (m, 2H, OCH₂), 5.06 (t, J = 2.5 Hz, 0.33 H, 3 -H), 5.18 (dd, J = 10.0, 2.5 Hz, 0.66 H, 3 -H), 5.62 (m_c, 1 H, 4a-H), 7.07 - 7.41 (m, 4H, Ph). - ¹³C NMR $(CDCl_3)$: $\delta = 15.11$, 15.16 (OCH_2CH_3) , 18.22, 18.26 (CH_3) , 23.24, 23.39 (COCH₃), 31.95, 33.77 (C-4), 52.96, 55.99 (C-4a), 63.99, 64.72 (OCH₂), 96.77, 98.86 (C-3), 101.9, 102.9 (C-10a), 126.4, 126.5, 126.6, 126.7, 126.8, 127.0, 128.1, 128.6 (CH-Ph), 136.9, 137.1, 138.2, 138.5 (i-Ph), 150.7, 152.5 (C-1), 170.1 (NCO).

C₁₆H₁₉NO₃S (305.4) Calcd. C 62.99 H 6.28 Found C 62.81 H 6.38

(3R*,4aR*)- and (3S*,4aR*)-5-Acetyl-3,4,4a,5-tetrahydro-3-isobutoxy-1-methylpyrano[3,4-b][1,4]benzothiazine (17c/18c): Reaction of 3 (500 mg, 2.14 mmol) with 16c according to the general procedure afforded a mixture of 17c and 18c (529 mg, 74%), $R_f =$ 0.61. – UV (CH₃CN): λ_{max} (lg ε) = 222 nm (4.291), 239 (4.112). -IR (film): $\tilde{v} = 2958 \text{ cm}^{-1}$, 2928 (CH), 1668, 1658 (C=O), 1580, 1572 (C=C). - ¹H NMR (CDCl₃): $\delta = 0.82 - 0.98$ [m, 6H, CH(CH₃)₂], 1.51 (m_c, 0.4 H, 4-H_{ax}), 1.64 (ddd, J = 12.5, 11.0, 10.0 Hz, 0.6 H, 4- H_{ax}), 1.97, 1.99 (2 d, J = 2.1 Hz, 3H, CH₃), 2.04 (s, 3H, COCH₃), 2.57 (m_c, 0.4 H, 4-H_{eq}), 2.60 (ddd, J = 12.5, 5.5, 2.5 Hz, 0.6 H, 4-H_{eq}), 3.20-3.70 (m, 2H, OCH₂), 5.06 (t, J = 2.5 Hz, 0.4H, 3-H), 5.18 (dd, J = 10.0, 2.5 Hz, 0.6 H, 3-H), 5.66 (m_c, 1 H, 4a-H), 7.07 - 7.45 (m, 4H, Ph). $-{}^{13}$ C NMR (CDCl₃): $\delta = 18.17$, 18.27 (CH₃), 19.14, 19.21, 19.24, 19.37 [(CH₃)₂], 23.24, 23.37 (COCH₃), 28.39, 28.45 (CH), 31.96, 33.71 (C-4), 53.00, 56.01 (C-4a), 75.16, 76.03 (OCH₂), 97.14, 99.26 (C-3), 101.8, 102.9 (C-10a), 126.3, 126.5, 126.6, 128.1, 128.2, 128.6 (CH-Ph), 136.9, 138.2 (i-Ph), 150.7, 152.6 (C-1), 169.9, 170.0 (NCO).

> C₁₈H₂₃NO₃S (333.4) Calcd. C 64.85 H 6.95 Found C 65.01 H 6.98

CAS Registry Numbers

(±)-1: 141089-95-4 / 2: 141089-98-7 / 3: 141090-00-8 / 4: 687-47-8) 5: 78560-77-7 / 6: 141089-93-2 / 7: 141089-94-3 / 8: 56613-80-0 / 9: 62596-61-6 / 10: 141089-96-5 / 11: 141089-97-6 / 12: 137-07-5 / 13: 1204-55-3 / 14: 61189-21-7 / 15: 141089-99-8 / 16a: 107-25-5 /

16b: 109-92-2 / 16c: 109-53-5 / 16d: 926-02-3 / 17a: 141090-01-9 17b: 141090-03-1 / 17c: 141090-05-3 / 17d: 141090-07-5 / 18a: 141090-02-0 / 18b: 141090-04-2 / 18c: 141090-06-4 / 18d: 141090-08-6 / AcSH: 507-09-5 / AcCH₂Cl: 78-95-5 / (MeO)₂CHNMe₂: 4637-24-5 / PhCH₂NH₂: 100-46-9 / AcSK: 10387-40-3

(3R*,4aR*)- and (3S*,4aR*)-5-Acetyl-3-tert-butoxy-3,4,4a,5-tetrahydro-1-methylpyrano[3,4-b][1,4]benzothiazine (17d/18d): Reaction of 3 (500 mg, 2.14 mmol) with 16d according to the general procedure afforded a mixture of 17d and 18d (565 mg, 79%), m.p. (mixture) 119 °C (ethanol), $R_f = 0.48$. – UV (CH₂CN): λ_{max} (lg ε) = 222 nm (4.307), 246 (4.047). – IR (KBr): \tilde{v} = 2978 cm⁻¹, 2934 (CH), 1664 (C=O), 1582, 1570 (C=C9, $-{}^{1}$ H NMR (CDCl₃); $\delta =$ 1.25, 1.26 [2 s, 9H, OC(CH₃)₃], 1.48 (m_c, 0.64H, 4-H_{ax}), 1.64 (m_c, $0.36 H_1 + H_{ax}$, 1.95 (d, $J = 2.1 Hz_1 3 H_1 CH_3$), 2.04 (s, 3H, COCH₃), 2.34 - 2.52 (m, 1 H, 4-H_{eo}), 5.34 (t, J = 2.5 Hz, 0.64 H, 3-H), 5.42 $(dd, J = 10.0, 2.5 Hz, 0.36 H, 3-H), 5.68 (m_c, 1 H, 4a-H), 7.02 - 7.44$ (m, 4H, Ph). $-{}^{13}$ C NMR (CDCl₃): $\delta = 18.42$, 18.53 (CH₃), 23.24, 23.41 (COCH₃), 28.64, 28.70 [OC(CH₃)₃], 31.16, 34.88 (C-4), 53.24, 56.19 (C-4a), 74.99, 75.96 [OC(CH₃)₃], 91.68, 93.59 (C-3), 101.1, 102.2 (C-10a), 126.3, 126.5, 126.7, 128.1, 128.2, 128.6 (CH-Ph), 137.2, 137.4, 138.2, 138.6 (i-Ph), 150.8, 153.1 (C-1), 170.0 (NCO).

> C₁₈H₂₃NO₃S (333.4) Calcd. C 64.85 H 6.95 Found C 64.95 H 7.01

- ^[1] Part 38: L. F. Tietze, P. Saling, submitted for publication in
- Synlett. ^[2] ^[2a]L. F. Tietze, U. Hartfiel, T. Hübsch, E. Voß, K. Bogdanowicz-Swed, J. Wichmann, Liebigs Ann. Chem. 1991, 275. - ^[26] L. F. Tietze, U. Hartfield, T. Hübsch, E. Voß, J. Wichmann, Chem. Ber. 1991, 124, 881, __ ^[2c] L. F. Tietze, E. Voß, Tetrahedron Lett. Ber. 1991, 124, 881. **1986**, 27, 6181. – ^[2d] M. Buback, W. Tost, T. Hübsch, E. Voß, L. F. Tietze, *Chem. Ber.* **1989**, *122*, 1179.
- [3] T . F. Tietze, U. Hartfiel, Tetrahedron Lett. 1990, 31, 1697
- ^[4] ^[4a] K. Takaki, M. Yamada, K. Negoro, J. Org. Chem. 1982, 47
- 5246, ^[46] S. Apparao, R. R. Schmidt, Synthesis **1987**, 896, 900. ^[5] ^[5a] O. Mitsunobu, Synthesis **1981**, 1. ^[5b] R. P. Volante, Tetrahedron Lett. 1981,22, 3119.
- ^[6] [6a] R. M. Evans, L. N. Owen, J. Org. Chem. 1970, 35, 513. -^[6b] R. G. Hiskey, R. A. Upham, G. M. Beverly, W. C. Jones, J. Org. Chem. 1970, 35, 513.
- ^[7] L. A. Reiter, J. Org. Chem. 1984, 49, 3494.
- ^[8] G. T. Pearce, W. E. Gorc, R. M. Silverstein, J. Org. Chem. 1976, 41, 2797.
- ^[9] J. H. Chapman, L. N. Owen, J. Chem. Soc. 1950, 579.
- ^[10] [10a] J. J. P. Stewart, J. Comput. Chem. 1989, 10, 209. ^[10b] J. J. P. Stewart, J. Comput. Chem. 1989, 10, 221.
- ^[11] M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 1985, 107, 3902.
- ^[12] M. J. S. Dewar, W. Thiel, J. Am. Chem. Soc. 1977, 99, 4899.

[80/92]